DBMR Hot Lab Safety training course Department for BioMedical Research

^b UNIVERSITÄT BERN

François Achermann, Occupational Safety, Health Protection & Environmental Safety

December 3, 2019, 2.30-4 p.m., M.E. Müller-Haus, Room H810, Murtenstrasse 35, 3008 Bern

University of Bern Department for BioMedical Research

François Achermann Head Safety DBMR, Radiation Safety Officer Lab Technician, Safety Specialist FCOS

Inselspital, KiKli D842 CH-3010 Bern

Tel.: +4131 632 30 15 safe@dbmr.unibe.ch www.safety.dbmr.unibe.ch

Department for BioMedical Research, Occupational Safety, Health Protection & Environmental Safety

^b UNIVERSITÄT BERN

DBMR Hot Lab Safety Course program

- 1. Introduction
- 2. Physics
- 3. Radiation safety
- 4. Legislation
- 5. Dosimetry
- 6. NuclidCalc App

- 7. Security of high radioactive sources
- 8. Questions

Introduction What IS «radiation»?

Electromagnetic waves

- AM radio, FM radio, shortwave radio, TV, cell phones, WiFi, microwave, visible light *all harmless at low intensity*
- Near ultraviolet (UV)
 beneficial at low doses, Vitamin D
- Far UV, X rays, y rays
 damaging at all levels)

b UNIVERSITÄT BERN

Fast massive particles

 Electrons (β rays), protons, neutrons, α rays (⁴He nuclei), heavy ion beams damaging at all levels

BERN

Radiation Spectrum of electromagnetic waves

Non-ionizing radiation

Ionizing radiation

4

Ionizing radiation What does the damage?

^b UNIVERSITÄT BERN

lonizing radiation produces highly reactive *free radicals*

 \rightarrow pathological DNA **double** strand breaks, that are usually permanent, causing:

Human lymphocyte chromosomes (Multi-Color FISH)

Non-irradiated

- **Cell Reproductive Death** (most common)
- **Genetic Mutation** (most subtle)
- Cancer (most unpleasant)

Single *strand breaks* usually heal in a few hours.

Radioactivity What IS radioactivity?

Radioactivity

is the property of unstable atoms (=radionuclides) to spontaneously transform into other atomic nuclei and thereby emit ionizing radiation.

This transformation is called radioactive decay.

There are >3000 known nuclides, of which about 250 are stable.

UNIVERSITÄT

6

Radionuclides What is the origin of radionuclides?

Naturally occuring radionuclides:

- *Primordial nuclides* are remnants of nucleosynthesis in stars before the formation of the solar system. Half-life at least 2% of the age of the earth (4.6E+09 a).
- *Radiogenic nuclides* are formed by radioactive decay.
- *Nucleogenic nuclides* occur, when atoms react with natural neutrons from cosmic rays, nuclear fission or other sources.

Artificial radionuclides

• Anthropogenic radionuclides

Physics Radioactive decay

Half lifes of nuclides

^b UNIVERSITÄT BERN

The decay law

Activity A = disintegration rate. N = number of unstable nuclei. The *decay coefficient* λ resp. the *half-life* T is constant and characteristic of each radionuclide. e = Euler number. t = elapsed time.

 $N_0 \operatorname{resp.} A_0$ $N_t \operatorname{resp.} A_t$ $N_t \operatorname{resp.} A_t$ $A_t = A_0 \times e^{-\lambda t} = \frac{A_0}{2^{\frac{t}{T}}}$

Hot Lab Safety – Physics

Radioactive decay Decay modes: α decay

b UNIVERSITÄT BERN

Radioactive decay Decay modes: β⁻ decay

UNIVERSITÄT RERN

β^{-} radiation

consists of negatively charged particles that are ejected from an atom's nucleus and that are physically identical to electrons.

Radioactive decay Decay modes: β^+ decay

β⁺ radiation

consists of positively charged particles that are ejected from an atom's nucleus and that are physically identical to positrons.

Radioactive decay Decay modes: y decay

γ radiation
consists of photons
that originate from
within the nucleus,
wheras
X-ray radiation
consists of photons
that originate from
outside the nucleus.

Hot Lab Safety – Physics

Radioactive decay Karlsruhe nuclide chart

U

Hot Lab Safety – Physics

Radioactive decay Karlsruhe nuclide chart

^b UNIVERSITÄT BERN

Ũ

Radioactive decay Radionuclides used at the DBMR

^b UNIVERSITÄT BERN

Nuclide	Half life	Major radiations	Energy (keV)	Shielding	Progeny
H-3	12.35 a	β-	6	-	He-3
C-14	5730 a	β-	156	Plexiglas 1cm	N-14
P-32	14.29 d	β-	1'617	Plexiglas 1cm	S-32
S-35	87.44 d	β-	167	Plexiglas 1cm	CI-35
Ca-45	163 d	β-	257	Plexiglas 1cm	Sc-45
Cr-51	27.70 d	ε, γ	γ: 320	Lead (5 cm)	V-51
Fe-55	2.70 a	3	6	-	Mn-55
Co-57	270.9 d	ε, γ	γ: 122	Lead (5 cm)	Fe-57

Radioactive decay Radionuclides used at the DBMR

^b UNIVERSITÄT BERN

Nuclide	Half life	Major radiations	Energy (keV)	Shielding	Progeny
Fe-59	44.53 d	β-, γ	β ⁻ : 149 γ: 1'291	Lead (5 cm)	Co-59
Ga-68	68 m	ε, β+, γ	β+: 638 γ: 1'022	Lead (5 cm)	Zn-68
In-111	2.83 d	ε, γ	γ: 245	Lead (5 cm)	Cd-111
I-123	13.2 h	ε, γ	γ: 159	Lead (5 cm)	Te-123
I-124	4.18 d	ε, β+, γ	γ: 1'022	Lead (5 cm)	Te-124
I-125	60.14 d	ε, γ	γ: 27	Lead (5 cm)	Te-125
I-131	8.04 d	β-, γ	β ⁻ : 192 γ: 637	Lead (5cm)	Xe-131
Cs-137	30.08 a	β-, γ	β⁻: 195 γ: 660	Lead (5 cm)	Ba-137

Radiation safety Principles in radiation safety

I. Justification

Principle of the necessity of a radiation application resp. justification of a an exposure to radiation (RPA art. 8). A justification is required if the radiation dose is >0.01 mSv/a for bystanders or >0.1 mSv/a for occupationally exposed persons.

II. Optimization (ALARA)

Optimization of radiation protection measures to keep radiation doses «As Low As Reasonably Achievable -ALARA» (RPA art. 9).

Principles in radiation safety ALARA

Distance

Doubling the distance quaters the dose rate. $\dot{D}_2 = \dot{D}_1 \times \left(\frac{r_1}{r_2}\right)^2$

D = Dose rate [*mSv/h*] *r* = Distance to radiation source

Not true if:

- fast massive particles
- r < 0.1 m

Distance

3r

2r

¹ Rule of thumb – Range depends on the energy of the radiation
² Tenth value layer (TVL)

Dose rate

A,**A**

Principles in radiation safety ALARA

Activity

The lower the activity, the lower the dose rate.

It is not reasonable to use higher activities just in order to speed up experiments.

Buy only as much as you need in the near future.

Regardless of natural isotopic decay, radiochemicals decay faster than their nonradioactive counterparts, due to

- direct interaction with radioactive emission (α, β, γ),
- interaction with excited species of the compound,
- thermodynamic instability and
- poor choice of storage conditions.

ALARA

Shielding

Since *alpha particles* ionize very strongly, they can be completely shielded with a sheet of paper.

α

Principles in radiation safety

All beta particles can be shielded with 1 cm

perspex/plexiglas.

Gamma rays can not be completely The higher the Z number of the shielding

UNIVERSITÄT

RERN

Principles in radiation safety ALARA

Tenth-value layer (TVL) for photons

$$H_p = \frac{A \times t \times h_{10} \times \left(\frac{1m}{r}\right)^2}{10^{\frac{d}{TVL}}}$$

- H_P : Equivalent dose in tissue at 10 mm deph
- A: Activity
- t: Time
- h_{10} : Nuclide specific dose estimation factor
- *r*: Distance from the source
- d: Thickness of the shielding material

Energy of photons in keV	TVL in mm Pb
100	3 mm
500	16 mm
1000	38 mm
1500	51 mm
2000	59 mm
3000	65 mm

Principles in radiation safety ALARA

- Keep active and inactive work separated
- Always work over a spill tray within a ventilated enclosure
- Monitor the work area frequently for contamination
- Follow the rules

Principles in radiation safety ALARA

Wear appropriate protective clothing and dosimeters

Wear the dosimeter, laboratory coat, safety glasses, gloves, long trousers and closed shoes when you are working with

radiochemicals

u^{\flat}

UNIVERSITÄT

Principles in radiation safety ALARA

Minimize time spent in handling radioactivity

Plan ahead. Perform cold runs to practice and to check procedures.

Never forget to do this

After completion of work, monitor yourself, wash and monitor again.

Principles in radiation safety ALARA

Minimize accumulation of waste

Disposal of waste is subject to statutory control. Separate radioactive waste by nuclide, state of aggregate (solid/liquid) and combustibility.

Nuclides with a half life < 100 days are stored until they decayed below 10 kg \cdot LL and then disposed of as non-radioactive waste. Tritium and carbon-14 are released to the environment in a controlled manner as well (<10 kg·LL per week).

Principles in radiation safety Dose limits

Dose limits for occupational exposed persons

The system of dose limits for the protection of individuals is in accordance with the recommendations of the International Commission on Radiological Protection ICRP (RPA art. 10).

Dose limit values for occupational exposed healthy adults

The effective dose *E* must not exceed the limit of 20 mSv/a for adult individuals of category B resp. 5 mSv/a for individuals of cat. A. Pregnant women: ≤1 mSv to the unborn child.

UNIVERSITÄT

The *equivalent dose H* must not exceed the following limits:

- For the lens of the eye: 20 mSv/a
- For the skin, hands and feet: 500 mSv/a

Operational radiation safety Working zones

Depending on the *degree of contamination* which is present or expected, zones are classified into the following types:

Zone	Surface contamination C _s	Airborne contamination C _A	
0	$C_{S} < 1 \ CS^{1}$	C _A < 0.05 CA ²	
I	C _s < 1 CS	0.05 CA ≤ C _A < 0.1 CA	D-Laboratory
Ш	1 CS ≤ C _S < 10 CS	$0.05 \text{ CA} \le \text{C}_{\text{A}} < 0.1 \text{ CA}$	C-Laboratory
	$10 \text{ CS} \le \text{C}_{\text{S}} < 100 \text{ CS}$	$0.1 \text{ CA} \le \text{C}_{\text{A}} \le 10 \text{ CA}$	
IV	$C_{S} \ge 100 \text{ CS}$	$C_A \ge 10 \text{ CA}$	

¹ Guidance value (Bq/cm²) for surface contamination as specified in RPO, Annex 3 Column 12; averaged over 100 cm². ² Guidance value (Bq/m³) for chronic airborne activity as specified in RPO, Annex 3 Column 11.

Operational radiation safety Working areas

Within working zones, where ambient dose rates \dot{D} are elevated, the following areas are designated with maximum permissible ambient dose rates:

Area	Ambient dose rate \dot{D} at accessible locations
V	Ď < 10 μSv/h
W	10 μSv/h < ່ d < 100 μSv/h
Х	100 μ Sv/h < \dot{D} < 1 mSv/h
Y	1 mSv/h < $\dot{\rm D}$ < 10 mSv/h
Z	<u></u> D > 10 mSv/h

 e.g. near X-ray systems without full protection.

UNIVERSITÄT

28

Radiation safety in the DBMR Organization

UNIVERSITÄT RERN

Informations on the DBMR safety microsite www.safety.dbmr.unibe.ch

Internal directives for radiation safety

- Handling radioactive materials _
- Thyroid triage for I-125 _
- Wipe-testing for H-3 and C-14
- Gammacell 40 research irradiator
- Gammacell 3000 research irradiator
- XCT 969
- Disposal H-3 and C-14 (UniBE)
- Radiation safety handbook (Insel)

â	Emergency	Safety	About Us				
Occup Health	ational Safety & Protection	lo	nizing radiation				
Biosafety		All	All DBMR employees who deal with ionizing radiation comply with the corresponding				
Chemi	cal Safety	inte	inal directives for radiation protection.				
Anesth	netics	L	egal provisions and documents	Handling radioactive materials			
Specia	l waste	×	-Ray	Research Irradiators			
Radiat	ion Safety	Р	ersonal dosimetry	Radiation meters			
RSO	DBMR						
lonia	zing radiation						

Downloads

Non-ionizing radiation

Radiation Safety Officers (RSO) Duties and responsibilities of the RSO

^b UNIVERSITÄT BERN

- Coordination of the licensing processes
- Control of the planning and execution of architectural radiation protection measures
- Designation of working areas and access authorization to controlled zones
- Designation of exposed persons and organization of the dosimetry
- Risk assessment for all activities with sources of ionizing radiation
- Quality assurance of the radiation meters

- Contamination monitoring
- Inventory of all radioactive materials
- Controlled release of radioactive waste to the environment
- Annual statement on the turnover of radioactive materials and on the release of radioactive waste to the environment
- Training and instruction of exposed persons
- Monitoring compliance with radiation safety regulations

UNIVERSITÄT BERN

Radiation safety in the DBMR How much of what can be used where?

Nuclide	LL ¹	LA ^{2,3}	C-Lab MEM		C-Lab	KiKli	D-Labs	¹ Exemption limit
			in work ^{2,4}	Storage ²	in work ^{2,4}	storage ²	work ^{2,4} + storage ²	annex 3
H-3	100	100	1200	1200	200	1000	<100 ⁵	² Total activity
C-14	1	9	50	50	50	250	<9 ⁵	in MBq
P-32	1000	2	100	100	100	200	<2 ⁵	³ Licensing limit,
S-35	100	40	40	200	20	100	<40 ⁵	RPO, annex 3
Ca-45	100	2	50	100	50	50	<2 ⁵	⁴ Handled activity
Cr-51	100	100	50	50	50	50	<50 ⁵	per day
Fe-55	1000	50	50	50	80	80	<50 ⁵	⁵ At MEM+KiKli
Co-57	1	8	1	40			<8 ⁶	⁶ At MEM only

Radiation safety in the DBMR How much of what can be used where?

Ь	
UNIVERSITÄT	
BERN	

Nuclide	LL ¹	LA ^{2,3}	C-Lab MEM		C-Lab KiKli		D-Labs	¹ Exemption limit
			in work ^{2,4}	Storage ²	in work ^{2,4}	Storage ²	Storage ² + work ^{2,4}	annex 3
Fe-59	1	2			5	50	<2 7	² Total activity
Ga-68	10	60	1200	1200			<60 ⁶	in MBq
In-111	10	20	340	500			<20 ⁶	³ Licensing limit,
I-123	100	50	50	50			<50 ⁶	4 Handlad activity
I-124	10	0.8	50	50			<0.8 ⁶	per day
I-125	100	0.7	70	250	20	50	<0.7 ⁵	⁵ At MEM+KiKli
I-131	10	0.5	50	250			<0.5 ⁶	⁶ At MEM only
Lu-177	100	5	350	500			<5 ⁶	⁷ At KiKli only

Operational radiation safety Procurement and storage of radioactive materials

- The local RSO must be informed about the ordering of radioactive materials
- Upon delivery of radioactive material the local RSO must receive a copy of the delivery note and must be informed about the storage site
- Keep records of your inventory of radioactive materials at all time
- Clearly label containers (nuclide, total activity, date, owner, radiation propeller)

- Per fire compartment, a total activity
 <1 licensing limit (LA) can be
 stored/handled per day in a demarked
 area within a normal lab (→ D-Lab)
- Radioactive materials are stored exclusively in the approved and marked storage locations

UNIVERSITÄT BERN

Swiss legislation in radiation protection Overview

Revised legislation in radiation protection What are the main changes since 2018?

- Authorization and supervision are based on risk-graded system
- Radiological security is strengthened
- Internationally harmonized exemption limits (LL)
- Lower limit of radiation dose for the eye lens
- Regular training is required in radiation protection

 Better protection of patients, staff and the environment through clinical audits

UNIVERSITÄT

- Exposure to natural radiation at work is considered as occupational exposure
- When building, the radon load must be paid more attention.

^b UNIVERSITÄT BERN

Dosimetry Exposure to ionizing radiation

Three types of exposure

- 1. External irradiation
- 2. Skin contamination with radionuclides
- Incorporation of radionuclides by inhalation, ingestion or diffusion through skin

Doses depends:

- Nuclide species
- Activity / dose rate
- Type of exposure
- Exposure time

Hot Lab Safety - Dosimetry

Dosimetry External irradiation

Personal dosimeter

External irradiation is individually determined monthly by means of TLD-dosimeter. The dosimeter must be worn on the torso. Pregnant women wear the dosimeter at abdominal level.

Who must wear a dosimeter?

Persons working in controlled zone are occupationally exposed to radiation and must undergo dosimetry.

The local RSO designates the occupationally exposed persons.

Hot Lab Safety – Dosimetry

Dose quantities Absorbed dose D

The fundamental dose quantity given by:

 $D=\frac{d\overline{\varepsilon}}{dm}$

where $d\overline{\epsilon}$ is the mean energy imparted to matter of mass dm by ionizing radiation.

The SI unit for absorbed dose is joule per kilogram (J/kg), and its special name is gray (Gy).

b UNIVERSITÄT BERN Hot Lab Safety – Dosimetry

Dose quantities Equivalent dose *H*

The *equivalent dose H* in a tissue or organ *T* is given by:

$$H_T = \sum_R W_R \times D_{T,R}$$

where $D_{T,R}$ is the mean absorbed dose D from radiation R in a tissue or organ T, and W_R is the radiation weighting factor. Since W_R is dimensionless, the unit for the equivalent dose is the same as for absorbed dose, J/kg. Its name is Sievert (Sv).

u^b

b UNIVERSITÄT BERN

Radiation weighting factors W_R

Radiation type	W _R
X	1
¥	1
β	1
α	20
n	5-20*
р	2

* Depending on the kinetic energy of the absorbed neutrons

Dose quantities Personal dose equivalents $H_p(d)$

The personal dose equivalent $H_p(d)$ is the absorbed dose *D* in soft tissue at an appropriate depth *d* [*mm*], below a specified point on the human body.

The *personal dose equivalent* $H_p(10)$ is used as an estimate of the *effective dose E*.

The *personal dose equivalent* $H_p(0.07)$, also called H_S , is used as an estimate of the dose to the skin and to the lens of the eye.

The unit of personal dose equivalent is *sievert (Sv)*.

$$\gamma$$
, X, if $r > 0.1 \text{ m}$:
 $H_p(10) = A \times t \times h_{10} \times \left(\frac{1 m}{r}\right)^2$

UNIVERSITÄT

β, γ, X, if r < 0.1 m: $H_P(0.07) = H_s = A \times t \times h_{0.07}$

If skin contamination: $H_s = \frac{A}{surface} \times t \times h_{c0.07}$

 $h_{10},\,h_{0.07}$ and $h_{c0.07}\,values$ published in RPO, annex 3

UNIVERSITÄT BERN

Dose quantities Equivalent dose values h_{10} , $h_{0.07}$ and $h_{c0.07}$

Nuclide	h₁₀ (mSv/h) / GBq in 1m distance	h_{0.07} (mSv/h) / GBq in 10 cm distance	h _{c0.07} (mSv/h) / (kBq/cm²)	Nuclide	h ₁₀ (mSv/h) / GBq in 1m distance	h _{0.07} (mSv/h) / GBq in 10 cm distance	h_{c0.07} (mSv/h) / (kBq/cm²)
H-3	<0.001	<1	<0.1	Fe-59	0.175	1000	1.1
C-14	<0.001	200	0.3	Ga-68	0.149	1000	1.5
P-32	<0.001	1000	1.6	In-111	0.082	400	0.3
S-35	<0.001	200	0.3	I-123	0.043	400	0.3
Ca-45	<0.001	700	0.8	I-124	0.170	300	0.5
Cr-51	0.005	3	<0.1	I-125	0.033	4	<0.1
Fe-55	<0.001	20	<0.1	I-131	0.062	1000	1.4
Co-57	0.021	100	0.1	Cs-137	0.092	2000	1.5

Dose quantities Equivalent dose $H_{p}(10)$

Example:

A person stays 42 hours at a distance of 0.4 meters from an unshielded 50 MBg Fe-59 source. What is the equivalent dose $H_{P}(10)?$

A person stays 42 hours at a distance of 0.4 meters from an
unshielded 50 MBq Fe-59 source. What is the equivalent dose
$$H_p(10)$$
?
 $H_p(10) = Activity \ A [GBq] \times time [h] \times h_{10} \left[\frac{mSv/h}{GBq}\right] \times \left(\frac{1 m}{r}\right)^2$
 $H_p(10) = P(10) = P(10) = P(10)$
 $H_p(10) = P(10) = P(10)$

$$H_{p}(10) = 0.05 \, GBq \, \times \, 42h \, \times \, 0.175 \, \frac{mSv}{h \, \times \, GBq} \, \times \, \left(\frac{1 \, m}{0.4 \, m}\right)^{2} = 2.3 \, mSv$$

UNIVERSITÄT BERN

Hot Lab Safety – Dosimetry

Dose quantities Skin dose H_S

Example:

A person holds her hand for 2 hours at a distance of 10 cm to a 50 MBq Ca-45 source. What is the skin dose H_s of the hand?

$$H_{S} = Activity [GBq] \times t [h] \times h_{0.07} \left[\frac{mSv/h}{GBq@ a \ distance \ of \ 10 \ cm} \right]$$

$$H_{S} = 0.05 \ GBq \times 2 \ h \times \frac{700 \ mSv/h}{GBq \ at \ a \ distance \ of \ 10 \ cm} = 70 \ mSv$$

Nuclide: Ca-45 A: 50MBq = 0.05 GBq t: 2 h r: 10 cm $h_{0.07}$: 700 $\frac{mSv}{h \times GBq}$ @ 10 cm H_{s} resp. $H_{p}(0.07)$ = ?

Dose quantities Skin dose H_S due to contamination

Example:

A person contaminates a skin area of 50 cm² with 100 MBq of P-32. 5 minutes pass until decontamination. What is the skin dose H_s ?

$$H_{S} = \frac{Activity \ [kBq]}{Area \ [cm^{2}]} \times t \ [h] \times h_{c0.07} \left[\frac{mSv/h}{kBq/cm^{2}}\right]$$

$$H_S = \frac{100'000 \ kBq}{50 \ cm^2} \times 0.083 \text{h} \times \frac{1.6 \ mSv/h}{kBq/cm^2} = 266 \ mSv$$

Nuclide: P-32 A: 100MBq = 10^5 kBq t: 5 min = 0.083 h Area: 50 cm² h_{c0.07}: 1.6 $\frac{mSv/h}{kBq/cm^2}$ H_S = ?

Dose quantities Effective dose *E*

The *effective dose* E is the tissue-weighted sum of the *equivalent doses* H_T in all specified tissues and organs is given by the expression

 $E = \sum_{T} W_{T} \times H_{T}$

The unit of the effective dose is J/kg, and it's name is *Sievert (Sv)*.

Tissue weighting factors W_T

Tissue or organ	W_T
Brain, skin, bone surface, salivary glands	0.01
Bladder, liver, oesophagus, thyroid	0.04
Gonads	0.08
Bone-marrow, colon, lung, breast, stomach, remainder tissues	0.12

Dose quantities How bad is how much?

	<u>.</u>	nSv/a	
Cosmic: 0.34	<u></u>	μSv/a	Return flight Zürich-Los Angeles = $60 \mu S_{2}$
Medicine; 1 mSv; 9% mSv; 25%	00	1 mSv/a	Annual limit value for the population
Terrestric; 0.45 mSv: 11%		3 mSv/a	Approx. natural annual dose
Other sources; 0.16 mSv: 4%		20 mSv/a	Limit for occupationally exposed person
0.38 mSv; 10%		200 mSv	1% additional risk of cancer
		1 Sv	Deterministic health damage
Radon; 1.6 mSv; 41%	××	7 Sv	Instant death

Internal irradiation Intake of radioactive material into the body

^b UNIVERSITÄT BERN

Committed equivalent dose $H_T(\tau)$

The time integral of the equivalent dose rate in a particular tissue or organ that will be received following the intake of radionuclides into the body, where τ is the integration time in years.

Committed effective dose E₅₀

The committed effective dose E_{50} is the sum of the products of the committed equivalent doses $H_T(\tau)$ and the appropriate tissue weighting factors W_T . The commitment period following the intake is taken to be 50 years for adults. Inhalation: $E_{50} = A_{inh} \times e_{inh}$ Ingestion: $E_{50} = A_{ina} \times e_{ina}$

 $E_{50} = A_{ing} \times e_{ing}$ $[Sv] = [Bq] \times [Sv/Bq]$

Internal irradiation Effective dose values e_{inh} and e_{ing}

1]

Nuclide	e _{inh} (Sv/Bq)	e _{ing} (Sv/Bq)	Nuclide	e _{inh} (Sv/Bq)	e _{ing} (Sv/Bq)	ТЬ
H-3	4.1E-11	4.2E-11	Fe-59	3.2E-09	1.8E-09	SDe
C-14	5.8E-10	5.8E-10	Ga-68	8.1E-11	1.0E-10	e _{int}
P-32	2.9E-09	2.4E-09	In-111	3.1E-10	2.9E-10	list
S-35	1.2E-10	7.7E-10	I-123	1.1E-10	2.1E-10	anı
Ca-45	2.3E-09	7.6E-10	I-124	6.3E-09	1.3E-08	4 a
Cr-51	3.6E-11	3.8E-11	I-125	7.3E-09	1.5E-08	
Fe-55	9.2E-10	3.3E-10	I-131	1.1E-08	2.2E-08	
Co-57	6.0E-10	2.1E-10	Cs-137	6.7E-09	1.3E-08	

The nuclide specific values e_{inh} and e_{ing} are listed in RPO, annex 3, columns 4 and 5 Hot Lab Safety – Dosimetry

Internal irratiation Committed effective dose E_{50}

b UNIVERSITÄT BERN

Example

A person inhales 70 MBq of I-125. What is the comitted effective dose E_{50} ?

 $E_{50} = Activity [Bq] \times e_{inh}[Sv/Bq]$

 $E_{50} = 7 \cdot 10^7 Bq \times 7.3 \cdot 10^{-9} Sv/Bq = 511 mSv$

Nuclide: I-125 A: 70 MBq = 7 × 10⁷ Bq e_{inh} : 7.3×10⁻⁹ Sv/Bq E_{50} = ?

Internal irradiation Committed effective dose E₅₀

Example

A person ingests 1 mCi of H-3. What is the committed effective dose E_{50} ?

 $E_{50} = Activity [Bq] \times e_{ing}[Sv/Bq]$

 $E_{50} = 3.7 \times 10^7 Bq \times 4.2 \cdot 10^{-11} Sv/Bq = 42 mSv$

Nuclide: H-3 A: 1 mCi = $3.7 \times 10^7 Bq$ $e_{ing}: 4.2 \times 10^{-11} Sv/Bq$ $E_{50} = ?$

Internal irradiation Who must monitor internal irradiation?

Nuclide Annual turnover If volatile H-3 20 GBq 2 GBq C-14 1.8 GBq 180 MBq P-32 400 MBq 40 MBq S-35 8 GBq 800 MBq Ca-45 400 MBq 40 MBq Cr-51 20 GBq 2 GBq Fe-55 10 GBq 1 GBq Co-57 1.6 GBq 160 MBq

Nuclide	Annual turnover	If volatile
Fe-59	400 MBq	40 MBq
Ga-68	12 GBq	1.2 GBq
In-111	4 GBq	400 MBq
I-123	1 GBq	
I-124	16 MBq	
I-125	14 MBq	
I-131	10 MBq	
Lu-177	1 GBq	100 MBq

Dosimetry Summary

^b UNIVERSITÄT BERN

Unit	Used for	Base units of measurement	Derivited old	units new (SI)	Conversion
Activity A	Radioactive materials	Activity A Disintegrations per time «disintegration rate» s^{-1}	Curie Ci	Becquerel Bq	$1 Ci = 3.7 \times 10^{10} Bq$ (=activity of 1 gr. radium)
Absorbed dose D	Irradiation of material	Energy per mass $J \times kg^{-1}$	Rad Rd	Gray Gy	1 Gy = 100 rd (radiation a bsorbed d ose)
Dose rate \dot{D} $\dot{D} = D/t$	Irradiation of material	Absorbed dose per mass and time $J \times kg^{-1} \times s^{-1}$	Rd/h	Gy/h	t: duration of exposure
lon dose l	Radiation meters	Charge per mass $As \times kg^{-1}$	Roentgen R		$1\frac{As}{kg} = 3.876 \times 10^3 R$

Dosimetry Summary

^b UNIVERSITÄT BERN

Unit	Used for	Base units of measurement	Derivited units old new (SI)		Conversion
Dose equivalent H	Irradiation of organs	A kind of damage unit, depending on the type of radiation $J \times kg^{-1}$	rem	Sievert Sv	1 Sv = 100 rem (radiation equivalent man)
Effective dose E	Irradiation of people	Transforms organ irradiation into a whole-body dose of the same late-risk $J \times kg^{-1}$		Sievert Sv	
Comitted effective dose E ₅₀	Irradiation of peope	Sum of the products of the committed equivalent doses $H_T(\tau)$ and the appropriate tissue weighting factors W_T over 50 years. $J \times kg^{-1}$		Sievert Sv	

NuclidCalc App By Federal Office of Public Health

Zerfall O B-NUKLIDDATEN 5.70E3 a Download ARBEITSBEREICHE 5.80E-10 Sv/Bq OFSP BAG NuclidCalc for 5.80E-10 Sv/Bq Android LE/LA ANZAHL kg.LL UND LA < 0.001 (mSv/h)/GBg@1mDownload 200 (mSv/h)/GBg@10cm NuclidCalc for iOS DOSISLEISTUNG <-> AKTIVITÄT $(mSv/h)/(kBq/cm^2)$ LL 1.00E+00 Bq/g A(t) AKTIVITÄT ZUR ZEIT t LA 9.00E+06 Bg CA 1.00E+04 Bg/m³ AKTIVITÄT (t) <1-10 kg.LL 30 Bq/cm² CS 5.0E+01 TBg D UMRECHNUNG Ci <-> Bq -C-11 C-14 C-14 **EXTREMITÄTENDOSIS** C-14 dioxyde dioxyde monoxyde

NuclidCalc App Activity <> kg·LL and LA

^b UNIVERSITÄT BERN

How many licensing limits are handled and how many kg·LL of radioactive waste is produced?

					5.556	x LA
					5e+04	x kg.LL
LE/LA ANZAHL kg.LL UND LA					5	O MBq
DOSISLEISTUNG <-> AKTIVITÄT	Bq	kBq	MBq	GBq	TBo	I PBq
$\mathbf{A}_{(t)}$ AKTIVITÄT ZUR ZEIT t				_		
AKTIVITÄT (t) <1-10 kg.LL	H-3,HTO	H-3,gaz	Be-7		Be-10	C-11
UMRECHNUNG Ci <-> Bq	C-11	C-11		14	C-14	C-14
	monoxyde	dioxyde	C-	•14	monoxyde	e dioxyde

NuclidCalc App Dose rate <> Activity

^b UNIVERSITÄT BERN

OFSP BAG

What ambient dose rate \dot{D} produces my unshielded source at a certain distance d?

WIKLIDDATEN	Dosislei	stung				
					9.2e+06	µSv/h
LE/LA ANZAHL kg.LL UND LA					1	
DOSISLEISTUNG <-> AKTIVITÄT						m
A (t) AKTIVITÄT ZUR ZEIT t	_				100	TBq
AKTIVITÄT (t) <1-10 kg.LL	Bq	kBq	MBq	GBq	TBq	PBq
UMRECHNUNG Ci <-> Bq	Dosisleistung				Aktivität	
			Cs-	137		

NuclidCalc App Activity A at time point t

II,

What is the activity A at time point t?

	Verflos	sene Zeit t	:			
		4.0	y 13	.0 d	0.0 h	0.0 m
LE/LA ANZAHL kg.LL UND LA	A _(t) =				93.59	kBq
DOSISLEISTUNG <-> AKTIVITÄT		D. A(0) 1.	Juni 2015	5	H. A(0) 08:50
A (t) AKTIVITÄT ZUR ZEIT t	D. A(t) 14. Juni 2019 H. A(08:50
AKTIVITÄT (t) <1-10 kg.LL					50	MBq
UMRECHNUNG Ci <-> Bq	Bq	kBq	MBq	GBq	TBq	PBq
EXTREMITATENDOSIS			Ca	-45		

NuclidCalc App Activity A_t < 1-10 kg·LL

^b UNIVERSITÄT BERN

11,

When has your radioactive waste decayed below 1 resp. 10 kg·LL .

	Zorfalls	zoit A < 1k	a			
	Zenans	10	y 25	50 d	10 h	57 m
LE/LA ANZAHL kg.LL UND LA	Zerfalls	zeit A < 10	kg.LL			
DOSISLEISTUNG <-> AKTIVITÄT		1	y 21	18 d	9 h	54 m
A(t) AKTIVITÄT ZUR ZEIT t		D. A(0) 14.	Juni 20	19	H. A() 08:52
AKTIVITÄT (t) <1-10 kg.LL	Datum				15	MBq
UMRECHNUNG Ci <-> Bq	Bq	kBq	MBq	GBq	TBq	PBq
			Fe-	55		

NuclidCalc App Conversion Curie <> Bequerel

^b UNIVERSITÄT BERN

11,

OFSP BAG

Convert Ci<->Bq

	Umrechnung Ci <-> Bq					
				6.9	2e+06	Bq
LE/LA ANZAHL kg.LL UND LA					6.919	MBq
DOSISLEISTUNG <-> AKTIVITÄT	4			_		1000
A(t) AKTIVITÄT ZUR ZEIT t					187	μCi
AKTIVITÄT (t) <1-10 kg.LL	nCi	uCi	mCi	Ci	kci	MCi
UMRECHNUNG Ci <-> Bq	TICI	μοι	mor	CI	KCI	
	Ci -> Bq				Bq -> Ci	

NuclidCalc App Equivalent dose H_S

Estimate the skin equivalent dose H_s for fingers and hands, if not protected.

0

OFSP BAG

	Dosislei	stung in	1 cm Dist	tanz		
H ARBEITSBEREICHE				20.0	mSv/l	n
	-	0.3				m
ANZANE KG.LE OND EA	Dosisleistung in 10 cm Distanz					
DOSISLEISTUNG <-> AKTIVITÄT		0.2 mSv/h				
A(t) AKTIVITÄT ZUR ZEIT t		0.003 mSv				
AKTIVITÄT (t) <1-10 kg.LL					10	MBq
UMRECHNUNG Ci <-> Bq	Bq	kBq	MBq	GBq	TBq	PBq
		1	Fe	-55		

UNIVERSITÄT BERN

61

Security of high radioactive sealed sources Dangerous quantities of radioactive material

UNIVERSITÄT

Definition

High-activity sealed source means a sealed radioactive source whose activity is greater than the activity D-value specified in the radiation protection ordinance. Annex 9.

Protection class (CH)	Activity in D-values
А	$A \ge 1000 D$
В	10 D ≤ A < 1000 D
С	1 D ≤ A < 10 D

Security of high radioactive sealed sources Dangerous quantities of radioactive material

D UNIVERSITÄT BERN

Gammacell 40 Research Irradiator

Nuclide: Cs-137 A_0 : 109.9 TBq (1st of November 2006) Half life T: 30.08 a A_t : 81.4 TBq (December 3, 2019) D-value of Cs-137: 0.1 TBq 81.4 TBq of Cs-137 = 814 D-values \Rightarrow Protection class B (CH)

Gammacell 3000 Research Irradiator

Nuclide: Cs-137 A_0 : 55 TBq (1st of December 1996) Half life T: 30.08 a A_t : 32.4 TBq (December 3, 2019) D-value of Cs-137: 0.1 TBq 32.4 TBq of Cs-137 = 324 D-values \Rightarrow Protection class B (CH)

Sum D-values of both high radioactive sealed sources in the gamma irradiation room 814 D-values + 324 D-values = 1138 D-values \Rightarrow Protection class A (CH)

Security of high radioactive sealed sources Comparison of security requirements (class A and B)

Security requirement	Protection class A	Protection class B
Number of physical barriers	≥2	
Resistance class of physical barrier	RC4 (≥ 1 barrier)	RC3 (≥ 1 barrier)
Lock	Mechanical, 2-factor authentication (key, badge, PIN, etc.)	Mechanical
Access protocol	Electronic storage of every access	-
Intrusion detection	After detection \geq 2 barriers have to be overcome	After detection \ge 1 barriers has to be overcome
Trustworthiness check of the authorized persons	Identity, CV, references, criminal record, debt record	Identity, CV, references
Security system check	Every day	Every week

Thank you for your attention!

^b UNIVERSITÄT BERN

François Achermann, Department for BioMedical Research

3rd of December, 2019, M.E. Müller-Haus, Murtenstrasse 35, 3008 Bern

